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MOBILE HEALTH INTERVENTION SYSTEMS
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• Use interventions to interact with users for healthcare purposes
• Just-in-time adaptive intervention [Nahum-Shani, et al. 2017]: provide 
right type of interventions at the right moment

Deliver interventions by adapting to user’s momentary 
contextual situation

*



OUR RESEARCH FOCUS

Find the optimal strategy to 
deliver notifications with 

respect to the user’s 
momentary contextual 

information for promoting a 
target activity
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• Optimize the delivery of context-aware notifications in 
mobile health intervention systems:



USE REINFORCEMENT LEARNING (RL)

• The optimization task can be modeled it as a Markov decision 
process (MDP): 
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S: observed contextual features

A: ‘sending notification’ or not

R: performance of target activities

• RL is widely used as it can take users’ feedback into 
consideration for adaptively optimizing the delivery strategy.  



CHALLENGE

Not desirable in practical applications like ours!
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RL approaches often require the agent to interact many times with 
the environment prior to performing well.
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RL TO OPTIMIZE MOBILE HEALTH INTERVENTIONS

- Learn fast using data from similar 
users [Tabatabaei et al. 2018 & Tomkins et al. 2019]

- Transfer the common knowledge 
acquired in other environments to get 
faster convergence [Gonul et al. 2018]

Learn from online data Learn from historical data

Still interact too much in the 
short period of early stage

- Integrate collected data in a multi-
armed bandit optimization process 
[Ameko et al. 2020]

- Integrate collected data in a MDP 
optimization process [Liao et al. 2020]

Data collection is hard: 
- small size (with interactions) 
- miss outcome information 
(without interactions)
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OUR APPROACH
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1. Learn from historical data that can be collected without interactions
2. Introduce constrains of interaction frequency in the RL algorithm



1. CONTEXT-AWARE RL

• Build up a simulator that behaves like a human:
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• Incorporate the prior knowledge from historical data & psychological 
insights to optimize the delivery strategy

Pr (target activity | contextual state, action)



DYNAMIC BAYES NETWORK

A: whether the target 
activity is performed

C: user’s momentary 
context

U: user’s urge to 
perform activity

M: user’s memory 
strength of activity

N: whether the 
notification is received
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Integrate the influence of contextual state and notification: 



INFERENCE FOR DECISION MAKING

Probability of performing the activity after receiving notifications: 

Learn from historical data 

Define by psychological theories
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A: target activity C: context  U: urge M: memory strength  N: notification



2. RESTRICTED RL

1. Add a variable of state in the MDP model 
2. Adapt the RL algorithm 
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Restrict the maximum number of notifications sent in each episode

Each state s: 

-Notification left 

-Time from last run

-Time from last notification

-Contextual variables…



THE RESTRICTED REINFORCE ALGORITHM
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• A policy gradient RL algorithm [Williams, 1992]

- Optimize the mapping between state and action
- Learn to ‘send restricted amount of notifications’ in each episode

state s action a 

Restrict the probability of a 
certain action being taken 
in each episode



CASE STUDY

Motivate people to participate in more running 
activities using an intelligent mobile system

Playful Data-driven Active Urban Living (PAUL): funded by NWO 
and SIA grant 629.004.013 
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PRACTICAL TASK

13

• Find the optimal strategy to deliver notifications with respect 
to the user’s momentary contextual information for promoting 
running activities

Restrict interaction frequency: 14 notifications within a week

Decision points

*



THE DATASETS

The historical running data:
- Collected by fitness mobile application and sensors 
- Including about 440K runs of over 10K users from 2013 to 2017
- Covering time and weather data at the start point of a run
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The Dutch weather data:
- Collected by KNMI from 2013 to 2017
- Covering hourly time and weather data around the Netherlands



RESULT 1: EFFICIENCY OF CONTEXT-AWARE RL

15

The learned policy from data & psychological insights is more 
efficient than rule-based policies.

Incorporating the 
prior knowledge 

from data & 
psychological 
insights can 
optimize the 
strategy of 

delivering context-
aware notifications

Episode

Re
w

ar
d 

(r
un

 f
re

qu
en

cy
)



RESULT 2: EFFICIENCY OF RESTRICTED RL
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Integrating interaction frequency ‘restriction’ in learning process is 
more efficient than learning without restriction.

Learning with 
interaction frequency 
restriction is essential 

for practical 
application like ours.
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INTERPRETATION OF LEARNED POLICY
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• Information of three episodes in the learning process of the R-
REINFORCE agent



TAKE-AWAY MESSAGES & FUTURE WORK
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ü We explore the practical usage of RL-based agents in mobile 
health intervention, and provide an approach to restrict interaction 
burden in the RL learning procedure.  

1. Incorporate the prior knowledge from data & psychological 
insights can optimize the strategy of delivering context-aware 
notifications

2. It is essential to take the frequency restriction of certain actions 
into account in the learning process of RL agents. 

Ø What’s next ? 
• A feasibility study (7 users in one week) has been conducted
• A pilot study with comparable user groups is planned (delayed 
because of the coronavirus situation) 
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